Implications of irradiating the subventricular zone stem cell niche.

نویسندگان

  • Vivian Capilla-Gonzalez
  • Janice M Bonsu
  • Kristin J Redmond
  • Jose Manuel Garcia-Verdugo
  • Alfredo Quiñones-Hinojosa
چکیده

Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs) reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context

Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...

متن کامل

Postnatal Deletion of Numb/Numblike Reveals Repair and Remodeling Capacity in the Subventricular Neurogenic Niche

Neural stem cells are retained in the postnatal subventricular zone (SVZ), a specialized neurogenic niche with unique cytoarchitecture and cell-cell contacts. Although the SVZ stem cells continuously regenerate, how they and the niche respond to local changes is unclear. Here we generated nestin-creER(tm) transgenic mice with inducible Cre recombinase in the SVZ and removed Numb/Numblike, key r...

متن کامل

Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal.

The Smoothened gene is necessary for cells to transduce hedgehog signaling. Although we and others have previously shown that embryonic removal of Smoothened in the neural tube results in a loss of stem cells from the postnatal subventricular zone, it was unclear whether this reflected a requirement for hedgehog signaling in the establishment or maintenance of the adult niche. Here, we have exa...

متن کامل

Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat

Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.  Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...

متن کامل

Engineering biomaterials for synthetic neural stem cell microenvironments.

Neural stem cells (NSCs) have been isolated from various speciesssuch as mice, rats, and humanssand from numerous regions in the developing and adult nervous systemsincluding the subventricular zone (SVZ), the subgranular zone of the hippocampus, the cortical neuroepithelium, and the spinal cord. In vivo, the NSC is encompassed by a microenvironment or niche that presents it with a repertoire o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stem cell research

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2016